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Project overview 

Context 
In the quest to design better plastics, there is a vast design 
space. An Edisonian approach is inefficient; computational 
tools can accelerate discovery. 
History
Project start in 2018 with an initial focus on performance-
advantaged polymers 
Project goal 
Predict material properties from molecular structure to 
facilitate targeted synthesis and pave the way for reduced 
time-to-market of PABPs 
This project answers this question:
How effectively can computational methods downselect 
material candidates from molecular structure? 

I have not failed. I’ve 
just found 10,000 
ways that won’t 
work. 
Thomas Alva Edison 

PABP = performance-advantaged bioproduct 
NREL | 2 



        

 
 

        
    

  

       

        
 

      
   

  
   

      
  

    

1. Approach – key elements 
Technical Approach 
• Take advantage of the unique chemical functionality of 

novel building blocks from sugars, lignin-derived 
aromatic compounds, and more 

• Focus on both polymers and small molecule PABPs 

• Feed targeted materials to Synthesis and Analysis of 
PABP project 

• Collaborate with other BETO projects: Biological 
Lignin Valorization, Bioconversion of Thermochemical 
Intermediates, BOTTLE Consortium, Catalytic 
Upgrading of Pyrolysis Products 

• Apply computational tools to identify industrially 
relevant technologies and guide industry engagement 

Wilson et al. In revision. PABP = performance-advantaged bioproduct 

projects 

NREL | 3 



        

 

 

 
   
    

     
  

 

   
   

 

   
    

  

1. Approach – key elements 

Technical Approach 
Task 1: Machine Learning (ML) 
Build and deploy ML models to vastly reduce 
design space of potential PABPs via molecular 
property prediction 

Frequent communication, working meetings, development 
of milestones, sharing results, and joint troubleshooting 

Task 2: Molecular Simulation (MS) 
• Develop structure-function relationships and 

design principles via molecular-level insight 
• Augment datasets for training ML models 
• Predict performance-advantaged properties 

PABP = performance-advantaged bioproduct 
ML = machine learning 
MS = molecular simulation 

Management Plan 
Mark Nimlos (ML task lead) 
Database development, machine learning 
for molecular property prediction 

Michael Crowley (Former PI) 
Macromolecular Simulation, QM/MM, 
CHARMM, Amber 

Brandon Knott (MS task lead, PI) 
Molecular dynamics, 
structure-function elucidation 

Leverage expertise in multiple modeling 
approaches to synergize internally and with 
partners. 

NREL | 4 



        

  

   

 
    

 
 

 

    

   
 

        
  

      

  
     
     

       
      

1. Approach – risks and milestones 

Risks and mitigation strategies 

• Risk: low accuracy and throughput 

• Mitigation: incorporation of additional 
model features, domain of validity 

• Risk: low interpretability of ML outputs 

• Mitigation: molecular simulations can 
provide molecular insight 

• Risk: insufficient population of database 
for certain substructures 

• Mitigation: augment with additional data, 
either from experiment or simulation 

Major milestones, Go/No-Go Decisions: 
• FY21: Predict new polymeric materials via machine learning 

(PolyID) and down select to ≥5 polymers to be 
experimentally synthesized and characterized, 
demonstrating a PABP (joint with Synthesis and Analysis of 
PABP project). 

• FY22 Go/No-Go: Demonstrate a 10% improvement in 
accuracy by augmenting ML datasets with molecular 
simulation generated data (milestone met, “Go”) 

• FY23: Predict solubility of PET in lignin-derived solvents 

• All milestones have been met on time 
• Most milestones have resulted in peer-reviewed publications 

NREL | 5 



        

  
 

   

   
 

  
   

   

2. Progress and outcomes - outline 
Integration of PolyID with Coupling reaction network Increasing ML model accuracy 

generation with machine learning by integrating tacticity 

Mechanistic insight into recyclable nylons Estimating toxicity of bio-based plasticizers 
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synthesis partners 



SMILES = simplified molecular input line entry system 

PolyID is a machine learning tool for polymer property prediction 

        

       
    
    

  

   

 

     
  

     

     
  

 
 

   
 

 

2. Progress and outcomes 

PolyID comprises 3 components: 

1. Database - links monomer structure to 
polymer properties. 1,791 unique polymers. 

2. Automated, structure generation (in silico 
polymerization) 

3. Message passing neural network for 
polymer property prediction 
-Tg (glass transition temperature) 
-Tm (melt temperature) 
-Barrier properties (e.g. how readily O2, CO2, H2O, 
etc. pass through) 
-Mechanical properties (moduli) 

m2p = monomers to polymers (python package) 
nfp = neural fingerprint (python package) NREL | 7 

Wilson et al. In revision. 



        

  

  
  

 

   

 
   

   
    

 

   

   

2. Progress and outcomes 
ML predictions validated by synthesis of polyesters and polyamides 

• Quantifiable relationship 
between model accuracy and 
overlap between training/test 
structures 

• Targeted augmentation of 
database to increase prediction 
accuracy 

• 10 polyesters and 12 
polyamides that were not in the 
database were synthesized and 
characterized by partner PABP 
project (Synthesis and Analysis 
of PABPs) 

NREL | 8 

Wilson et al. In revision. 



        

     
 

 
  

  

  
    

  
    

 
 

  
  

  

   
   

      
   

   

     

2. Progress and outcomes 
ML vastly reduces the design space for PABP PET replacements 

• PABP analog of PET was 
targeted with a Tg above 
the boiling point of water 
and with equivalent or 
improved O2 barrier 
properties 

• 5 PABPs predicted from 
KEGG that met the 
requirements (green 
circles), linked to 3 diacids 

• 1 polymer synthesized 5-carboxyvanillate 
(poly(ethylene 5-
carboxyvanillate), PEC), 
with Tg = 112 C 

Wilson et al. In revision. 
PET = poly(ethylene terephthalate) 
Tg = glass transition temperature 
KEGG = Kyoto Encyclopedia of Genes and Genomes (https://www.genome.jp/kegg/) 

NREL | 9ML = machine learning 

https://www.genome.jp/kegg/


polymer property prediction 
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2. Progress and outcomes – coupled network generation 
Coupling reaction network generation with ML for 

• Integration of PolyID1 and 
Pickaxe2 expands discovery 
space to chemically accessible 
molecules 

• Initial molecules from known 

Initial Monomers 
(Kegg + Sigma 
diacids / diols) 

Approx. 50,000 molecules 
of biological origin

479 diols and 333 diacids 

i 

i 

Step 1: Build 
Polymers 

Step 2: Predict
Properties 

Step 3: Shortlist
Parent 

Monomers 
Step 4: Reaction 

Generation 

Step 5: Shortlist
Child Monomers biological sources 

• Proof of concept performed with 
optimizing difference of Tm and 
Tg for diol and diacid polyesters 

1 Wilson et al. In revision. 
2 https://github.com/tyo-nu/MINE-Database 
Tm = melting temperature 
Tg = glass transition temperature 
KEGG = Kyoto Encyclopedia of Genes and Genomes (https://www.genome.jp/kegg/) 

https://www.genome.jp/kegg
https://github.com/tyo-nu/MINE-Database
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2. Progress and outcomes – coupled network generation 
Pickaxe + PolyID predicts PABPs with excellent Tm-Tg 

• Network generation coupled with 
property prediction expands the 
discovery space 

• Increasing network expansion from 
one generation to two generations 
leads to faster property 
convergence and higher properties 

• Increasing similarity amongst 
monomers across loops supports 
converging properties 

• Further improvement of properties 
can be tuned by further expansion 
of reaction networks 

Tm = melting temperature 
Tg = glass transition temperature 

Lopez et al. In preparation. 



        

   

    
 

   

   
  
  

 

    
    
  

    
   

 
  

          

2. Progress and outcomes – incorporating tacticity 
There is significant potential for improvement of existing ML models by incorporating chirality 

• Polymers can contain 
stereochemical information 
on the pendant groups, 
known as chirality. 

• Chirality can have a 
significant impact on the 
properties of polymers. 

• Current models do not 
incorporate chirality for 
prediction, which can 
introduce significant error 

Pm = probability of a meso linkage 
Tm = melting temperature 
Tg = glass transition temperature Shebek et al. In preparation. NREL | 12 



        

   

 

     
    

 
   

    
     

  

2. Progress and outcomes – incorporating tacticity 
Incorporating chirality improves model predictions 

We incorporate chiral information Tacticity incorporation Including tacticity reduces error 
into our model in two ways: 

1) Pm (global) 

2) Chiral tags (atom-based) 

MPNN = Message Passing Neural Net 
Pm = probability of a meso linkage 
Tm = melting temperature 
Tg = glass transition temperature Shebek et al. In preparation. NREL | 13 



        

   

  
 

  
      

  
  

  
  

 

  
 

    

     

 

 
 

    

2. Progress and outcomes – incorporating tacticity 
Application: PHA replacements for PET 

• Many (105) possible 
polymers from KEGG 

• Accurately predicted 
performance for a PHA 
copolymer (top) 

• Predicted an as-yet-
uncharacterized novel 
PHA polymer with high 
performance (bottom) 

Poly(lactic-co-mandelic) Acid 
Tg (°C) Tm (°C) 

Tacticity Pred Exp Pred Exp 
Syndio 71 N/A 195 N/A 

Atac 52 54 96 N/A 

Iso 71 76 164 N/A 

Poly(2-methoxymandelic) acid 
Tg (°C) Tm (°C) 

Tacticity Pred Exp Pred Exp 
Syndio 65 N/A 199 N/A 

Iso 75 N/A 197 N/A 

PHA = poly(hydroxyalkanoate) 
Tm = melting temperature 
Tg = glass transition temperature 
KEGG = Kyoto Encyclopedia of Genes and 

Genomes (https://www.genome.jp/kegg/) 

Experimental data:
Lukito, B. R., et al. (2021). Bioresources and Bioprocessing, 8(1) 
Pedna, A., et al. (2015). Journal of Applied Polymer Science, 132(30) 

Shebek et al. In preparation. NREL | 14 

https://www.genome.jp/kegg/


        

     
     

  
 

 
  

    
 

 
    

  

 

      

   
  

        

2. Progress and outcomes – mechanistic understanding of redesigned nylons 
Atomistic modeling rationalizes mechanisms of polymerization and chemical recyclability 

• A novel, hybrid nylon (nylon 4/6) 
was introduced by partner projects 
(BOTTLE, PABP) that exhibits: 

• optical clarity 
• high Tg
• melt processability 
• full chemical recyclability 

• We employed density functional 
theory (DFT) to model the 
propagation step in order to 
investigate which stereoselectivity is 
more kinetically favorable 

DFT = density functional theory 
Tg = glass transition temperature 

Cywar et al. JACS 2022 NREL | 15 



        

     
     

  
 

 
  

    
  

 
 

 

      

   
  

        

2. Progress and outcomes – mechanistic understanding of redesigned nylons 
Atomistic modeling rationalizes mechanisms of polymerization and chemical recyclability 

• A novel, hybrid nylon (nylon 4/6) 
was introduced by partner projects 
(BOTTLE, PABP) that exhibits: 

• optical clarity 
• high Tg
• melt processability 
• full chemical recyclability 

• DFT suggests molecular level 
conformational changes and 
hydrogen bonding promote nylon 
4/6 thermal decomposition 
(recycling) before melting 

DFT = density functional theory 
Tg = glass transition temperature 

Cywar et al. JACS 2022 NREL | 16 



        

   

  

 
  

    
   

 

  
   

      
  

  
 

      
    

Green Chemistry

JACS.  

Cell Reports Physical Science.

3. Impact – Publications and code distributions 

Publications 

• . I.F. = 11.0 

• Forthcoming PolyID paper (in review) 
• I.F. = 18.7 

Toxicity of lignin-derived plasticizers 
• I.F. = 16.4 

DFT of fully recyclable nylon 

PolyID available as an online tool! 
https://polyid.nrel.gov 

Code distributions 
Monomers to Polymers (m2p) 
A simple interface for converting monomers to 
polymers using SMILES representation. 
https://pypi.org/project/m2p 

• I.F. = 7.8 
Structure-function of β ketoadipate-based nylon 

I.F. = impact factor 

Neural Fingerprint (nfp) 
Python-based end-to-end learning on molecular 
structure. 
https://pypi.org/project/nfp 
PolyID (polyid) 
Framework for building, training, and predicting 
polymer properties using graph neural networks. 
https://pypi.org/project/polyid 

NREL | 17 

https://polyid.nrel.gov/
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3. Impact –Partnerships 
Tools developed in this project are being applied to specific polymer classes targeting specific
properties collaboratively with companies and DOE partners 

• Goal: Identify polymer candidates with superior 
barrier performance compared to non-recyclable 
multi-layer films 

• Other partners: BOTTLE Consortium 
Algix, Patagonia, Tempur Sealy 
• Goal: develop bio-based non-isocyanate 

polyurethanes for industrial applications. 
• PolyID tool used to map chemical properties of 

polyurethane precursors 
• Several formulas with promising performance were 

successfully prepared 
• Other partners: TCF project “Commercialization of 

biobased non-isocyanate polyurethane” 

• Goal: discover polymers that can be produced from 
anhydrous sugars generated via biomass 
deconstruction. 

• PolyID work initiated in FY22Q2 and completed in 
FY22Q3 

• Goal: Redesign of waste plastics into recycle-by-
design materials leveraging Inverse Design tools 

• Current status: synthesis based on PolyID 
predictions initiated in FY23Q2 

(BETO/AMO) 

• In collaboration with the University of Wisconsin, 
PolyID is being used to develop bioderived 
polyesters. 

NREL | 18 



        

   
   

 

      
      

        
   

  
      

     
    

  
  

 
  

   

Summary 

Wilson et al. In revision. 

ML = machine learning 
MS = molecular simulation 
PABP = performance-advantaged bioproduct 

Overview 
• Predict material properties from molecular structure to 

reduce PABP design space, facilitating targeted synthesis 
Approach 
• Machine learning and molecular simulation to predict novel 

PABPs and develop structure-function relationships 

Progress and outcomes 
• PolyID: machine learning tool for polymer property prediction 
• Mechanistic insight, rationalization of physical properties, 

and in silico predictions of performance advantages 
Impact 
• Targeted synthesis of PABPs 
• High impact publications 
• Public code distribution 
• Industrial collaborations leveraging PolyID 

NREL | 19 



        

    
    

    
    

 
    

  
 

   
      
     

    
       
   

  

    

 
    

     
    

    
     

      
  

  

  

 
 

 

Quad chart overview 

Timeline 
• Active Project Duration: 10/1/2020 – 9/30/2023 
• Total Project Duration: 10/1/2017 – 9/30/2023 

FY22 funding Total Award 

DOE 
Funding 

$400,000 
(10/01/2021– 
9/30/2022) 

$400,000 – FY23 
$1,200,000 – Active 
Project (FY21-23) 

Project Partners 
BETO Projects: Synthesis and Analysis of Performance-
Advantaged Bioproducts, Biological Lignin Valorization, 
Bioconversion of Thermochemical Intermediates, BOTTLE 
Consortium, Catalytic Upgrading of Pyrolysis Products, 
Commercialization of Biobased Non-Isocyanate Polyurethane 
(TCF) 

Project Goal
Accurate computational prediction and
structure-function relationships of performance-
advantaged bioproducts 

End of Project Milestone 
Establish and apply a computational method for
assessing the suitability of new bio-based 
solvents for polymer synthesis and processing:
Predict solubility of PET in ≥ 25 novel lignin-
derived performance-advantaged solvents and 
benchmark against experimental values. 

Funding Mechanism 
Bioenergy Technologies Office FY21 AOP Lab 
Call (DE-LC-000L079) – 2020 

TRL at Project Start: 2 
TRL at Project End: 4 

University Partners: Northwestern University, Colorado State 
University, University of Wisconsin-Madison 

NREL | 20 
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2. Progress and outcomes – in silico toxicity prediction 
Bio-derived plasticizers predicted to exhibit reduced toxicity 
• PABP project partners biologically 

converted CFP wastewater molecules 
into performance-advantaged, bio-
based plasticizers for PVC 

• We utilized the EPA Toxicity 
Estimation Software Tool (TEST)1 and 
Chemical Transformation Simulator 
(CTS)2 to predict several health and 
environmental toxicity metrics and 
rationalize toxicity via primary 
metabolic pathways 

• Compared to two industry standard 
plasticizers (DEHP and DEHA), 
diacid-based plasticizers were 
predicted to exhibit reduced health 
and environmental risks 

Primary citation: 
Henson et al. Green Chemistry 2022 

Similar contribution in the context of plasticizers 
derived from oxidative depolymerization of 
hardwood lignins: 
Su et al. ACS Central Science 2023 

CFP = catalytic fast pyrolysis 
PVC = poly(vinyl chloride) 
EPA = Environmental Protection Agency 
1 Martin, T. M. T. E. S. T. (Toxicity Estimation 
Software Tool) Version 5.1, 5.1; U.S. EPA: 2020. 
2 Chemical Transformation Simulator(CTS), 
Version 1.0 2019. 

23 



        

   Responses to previous reviewers’ 2021 comments 

o Reviewer comment: “More involvement with industry would be a good addition, although it is encouraging to see an 
exploration of “Commercialization of Fully Renewable Non-Isocyanate Polyurethanes” with industry such as Sealy, 
Patagonia, Agilix.” 

o Reviewer comment: “Key will be to connect to an even greater base of materials experts in industry to tap their insights 
into structure/property relationships and performance.” 

o Response: Industrial engagement / partnership has always been a goal of this project, and as the first reviewer 
noted, we had some engagement that was reported on in the 2021 Peer Review. Since the last Peer Review, we 
have since built significantly on those efforts, as noted in the Impact section of our 2023 review. The 
computational tools developed in the Inverse Design project are applied selectively within this project. This 
development work is also leveraged significantly in other projects with industrial partners, where they are applied 
to specific polymer classes, targeting specific properties, and for specific applications. 

NREL | 24 



        

   Responses to previous reviewers’ 2021 comments 

o Reviewer comments: Not clear why ML ("black box") is superior to simply using molecular / mechanistic simulation 
tools. ML could be faster, certainly, but such models are often unreliable upon extrapolation of the training date set. 

o Response: The team does not assert that machine learning (“black box”) or molecular simulation is superior 
because both approaches have their strengths and weaknesses, and leveraging both approaches can provide the 
greatest outcomes. We are employing machine learning to pare down the immense design space to pass the 
most promising candidates to our experimental partners. The atomistic simulations are a finer-resolution tool to 
further pick out promising candidates as well as drive the development of structure-function relationships. 

NREL | 25 



        

   Responses to previous reviewers’ 2021 comments 

o Reviewer comments: Results are indicative of good progress and outcomes. There is emphasis on believing that this is 
going to work supported by rigorous statistical input. It is important to bear in mind that a null hypothesis might be that 
the predictions have potential to deliver a zero outcome. 

o Response: The team acknowledges the possibility of the null hypothesis. This would be an unfortunate outcome of 
the research, and the tools developed within this project will help experimental efforts in identifying both promising 
candidates as well as candidates that are unlikely to be performance advantaged. 

NREL | 26 



        

   Responses to previous reviewers’ 2021 comments 

o Reviewer comments: It is interesting that the team chose to pursue an alternative to PET rather than targeting ways to 
make PET more sustainable. This team would also have the means to improve PET, producing greener versions of 
monomers for PET production. They might consider the (often) prohibitively high cost of introducing new polymers vs 
improving an existing one. 

o Response: We appreciate the costs and challenges in bringing new materials to the market, and we acknowledge 
that both more sustainable routes to existing materials (e.g., PET) as well as sustainable replacements will likely 
be needed to realize a fully circular economy. 
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   Publications, patents, and presentations 

Publications 

In preparation 

Caroline B. Hoyt, Nicholas A. Rorrer, A. Nolan Wilson, Avantika Singh, Scott Nicholson, Robert A. Allen, Gregg T. 
Beckham. “Bio-based aromatic amines for catalytic naphthoxazine synthesis and effects on ring opening.” In preparation 
(Target Journal: Green Chemistry). 

Lauren Lopez, Linda J. Broadbelt, Nolan A. Wilson. “Combining reaction network generation with machine learning for 
expanded discovery of renewably sourced polymers with performance advantages.” In preparation. 

Kevin M. Shebek, Linda J. Broadbelt, Nolan A. Wilson. “Accurate property prediction for chiral polymers via multiple 
strategies for incorporating tacticity into machine learning predictions.” In preparation. 

Under review 

A. Nolan Wilson, Peter C. St. John, Daniela H. Marin, Caroline B. Hoyt, Erik G. Rognerud, Mark R. Nimlos, Robin M. 
Cywar, Nicholas A. Rorrer, Kevin M. Shebek, Linda J. Broadbelt, Gregg T. Beckham, Michael F. Crowley. “PolyID: Artificial 
intelligence for discovering performance-advantaged and sustainable polymers.” Under review. 
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   Publications, patents, and presentations 

2023 
Zhi-Ming Su, Jack Twilton, Caroline B. Hoyt, Fei Wang, Lisa Stanley, Heather B. Mayes, Kai Kang, Daniel J. Weix, Gregg 
T. Beckham, Shannon S. Stahl. “Ni- and Ni/Pd-catalyzed reductive coupling of lignin-derived aromatics to access 
biobased plasticizers.” ACS Central Science. 2023. 

2022 
Nicholas A. Rorrer, Sandra F. Notonier, Brandon C. Knott, Brenna A. Black, Avantika Singh, Scott R. Nicholson, 
Christopher P. Kinchin, Graham P. Schmidt, Alberta C. Carpenter, Kelsey J. Ramirez, Christopher W. Johnson, Davinia 
Salvachúa, Michael F. Crowley, Gregg T. Beckham. "Production of β-ketoadipic acid from glucose in Pseudomonas putida 
KT2440 for use in performance-advantaged nylons." Cell Reports Physical Science. 2022. 

William R. Henson, Nicholas A. Rorrer, Alex W. Meyers, Caroline B. Hoyt, Heather B. Mayes, Todd Vander Wall, Rui 
Katahira, Jared J. Anderson, Brenna A. Black, William E. Michener, Lahiru Jayakody, Davinia Salvachúa, Christopher W. 
Johnson, Gregg T. Beckham, "Bioconversion of wastewater-derived methyl phenols to methyl muconic acids for use in 
performance-advantaged bioproducts." Green Chemistry. 2022. 

Robin M. Cywar, Nicholas A. Rorrer, Heather B. Mayes, Anjani K. Maurya, Christopher J. Tassone, Gregg T. Beckham, 
Eugene Y.-X. Chen. “Redesigned hydrid nylons with optical clarity and chemical recyclability.” Journal of the American 
Chemical Society. 2022. 
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   Publications, patents, and presentations 

Code distributions 

Monomers to Polymers (m2p) 
A simple interface for converting monomers to polymers using SMILES representation. 
https://pypi.org/project/m2p/ 

Neural Fingerprint (nfp) 
Python-based end-to-end learning on molecular structure. 
https://pypi.org/project/nfp/ 

PolyID (polyid) 
Framework for building, training, and predicting polymer properties using graph neural networks. 
https://pypi.org/project/polyid 
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   Publications, patents, and presentations 

Presentations 

“Machine learning for prediction of sustainable polymers.” American Chemical Society, Fall 2022 Meeting. Nolan Wilson 
(presenter), Peter St. John, Mark Nimlos, Mike Crowley. 

“Bio-derived, Sustainable Polymers Through End-to-End Learning.” Gordon Research Conference – Computational 
Materials Science and Engineering. 2022. Nolan Wilson (presenter), Peter St. John, Daniella Marin, Caroline B. Hoyt, 
Mark Nimlos, Nic Rorrer, Gregg T. Beckham, Mike Crowley. 
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Publications, patents, and presentations 

Provisional Patent Number Title 
63/158,715 Machine Learning for Biopolymers and High-Performance Aromatic Bio-based Polyesters. 

ROI Number Title 
Copolymerized anhydrosugar-based methacrylates with olefins 

ROI-22-43 High barrier and compostable films 

Software ROI Number Title 
SWR-19-40 “M2P” Monomers to Polymers 

SWR-19-13 “NFP” Neural Fingerprints 

SWR-21-98 PolyID* 

*PolyIDTM has been retained as a trademark for the machine learning tool 
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